
COS 333 Internals: Parsnip
Shuyang Li, Timothy Seah, James Wang, David Zhao

Our app is a Google Chrome extension packaged as a .crx file, just like any other extension

you can download from the Chrome store. The source files are written in a combination of

HTML, CSS, and JavaScript. Within the .crx file we have the following source files:

Client Side

manifest.json (required for chrome extensions): a manifest file that holds the app together.

It specifies what permissions the app has (for example, our app can access information from

the user’s open tabs), what files are linked to the extension, etc.

index.html: the user interface for our app is stored in index.html. index.html is hosted on

the website (www.princeton.edu/~shuyangl). When the user clicks our app’s icon, our app

opens a new window with www.princeton.edu/~shuyangl as the URL.

mystyle.css: defines the style for index.html

macrodef.js: macrodef.js defines logic for index.html. When the user clicks on any of the

buttons specified in index.html, macrodef.js sends a message to background.js for further

processing.

webpageinject.js: when the user presses the “record” button, a message is sent to

background.js telling it to inject webpageinject.js into all active tabs. Webpageinject.js

attaches event listeners to all of the DOM elements on the page. When triggered, the event

listener sends a message to background.js containing information about the action. Our app

uses this information to play the macro later on.

The sent information contains two things: the JavaScript code to perform the action and the

URL associated with the action. The bulk of the JavaScript code attempts to identify the

element to perform the action on. We cannot simply address an element by its index

http://www.princeton.edu/~shuyangl
http://www.princeton.edu/~shuyangl

because an element’s position on a webpage may change from day to day. Our app

identifies elements by matching on important attributes such as tag, id, class, href, and src.

background.js: background.js runs as long as our extension is active. Background.js is the

“glue” of our app. It performs the following functions:

a. When the user clicks on our app’s icon, background.js receives a message and opens

a window containing the GUI for our app. When the user closes our app’s window,

background.js terminates all of our app’s processes (except for a process that listens

for the user to click on our app’s icon).

b. Recording: when the user presses the “record” button, macrodef.js sends a message

to background.js telling background.js to start recording. Background.js then injects

webpageinject.js into all of the user’s currently open pages and any other pages that

the user might open. When the user presses “record” a second time, background.js

stops injecting webpageinject.js into all new pages.

c. Storage: when the user presses the “save” or “save with condition” buttons,

macrodef.js sends a message to background.js. background.js stores the macro using

the chrome.storage API, which stores the information on the user’s computer as a

JSON object in Chrome local storage. If the user wants to remove their saved macros,

they can click “delete” or “wipe memory,” which use the chrome.storage API to delete

the macro whose name is specified in the “Macro Name” field or delete all the

macros in local storage. When the user presses “load,” macrodef.js sends a message

to background.js. background.js then loads the macro from memory into a global

variable and displays it in the UI.

d. Clearing forms: if the user clicks “clear form,” macrodef.js sends a message to

background.js telling it to delete the current macro and clear it from the user

interface. This includes both the macro and the associated conditions. If the user

clicks “clear conditions,” macrodef.js sends a message to background.js telling it to

delete the conditions and remove them from the user interface. If the user hits “play”

or “play with repeat” when there is no macro in the user interface, nothing will

happen.

e. Playing macros: if the user clicks “play” or “play with repeat,” macrodef.js sends a

message to background.js telling it to play the macro. Depending on which button is

pressed (play vs play with repeat) and whether or not a condition was saved,

background.js decides to either play the macro immediately, play it when the time

condition is met, or play it at every interval. Our app plays a macro using the

following basic logic:

i. Open a window containing the URL associated with the first action.

ii. Add a listener for when the URL changes. When the URL changes, play all the

actions associated with that URL.

iii. Refresh the page, triggering the listener for the first time.

iv. Our app plays all the actions associated with a URL until it changes, after

which it plays all the actions associated with the new URL. It continues to do

this until there are no more actions to perform, after which our app removes

listeners and terminates execution.

Server Side

The server side of Parsnip is hosted on an Amazon Web Services Elastic Compute Cloud

instance. The server used SQLite3 as its database system because of its very quick

deployability. SQLite3 was able to be hosted as a part of the EC2 layer, rather than

occupying its own server.

sniff.py was the main program that implemented packet sniffing and macro storage

capabilities. Packet sniffing was enabled through the Scapy python library. sniff.py recieved

macro information through XMLHtttpRequests called by the Chrome extension and then

parsed the http and TCP information though regular expression searches. Then, sniff.py

inserted whole macros as strings into the SQLite3 database for future use, accompanied by

IP Address and macro name information.

execute.py was the more experimental side of the backend. It utilized the Python libraries

of BeautifulSoup, Splinter, and the headless web browser PhantomJS, in order to attempt

preliminary implementation of macro execution. Unfortunately, it wasn’t as simple as

executing a single macro script, because the auto-generated macro scripts required

confirmation of web page state before each segment of JavaScript could be executed. For

the most part, execute.py was a preliminary exploration in backend execution functionality.

