
Lightweight Macro Recording and Playback for
Google chrome

Shuyang Li, Timothy Seah, James Wang, David Zhao

Motivation

There are many online tasks that are
repetitive, tedious, or otherwise lend
themselves well to automation.

Motivation

There are many online tasks that are
repetitive, tedious, or otherwise lend
themselves well to automation.

Motivation

There are many online tasks that are
repetitive, tedious, or otherwise lend
themselves well to automation.

Motivation

There are many online tasks that are
repetitive, tedious, or otherwise lend
themselves well to automation.

Examples:
-Price monitoring (eBay sniping sites)

-Time-sensitive registration (course enrollment)

-Check status every time interval

A Modest Proposal

A Chrome extension that can:

A Modest Proposal

A Chrome extension that can:

1. Record a macro, a series of actions
across multiple web pages

A Modest Proposal

A Chrome extension that can:

1. Record a macro, a series of actions
across multiple web pages

2. Play that macro when a condition is
met.
a. Time (e.g. 9pm this Friday), intervals (e.g.

every 5 seconds)
b. Value (e.g. when the price drops below $200)

Previous Related Work

- iMacros for Chrome

- Ad hoc sites (eBay sniping sites,
airplane ticket price alerts, etc)

Use Cases

1) At 9:00am on Sunday, play a YouTube
video as an alarm

Use Cases

1) At 9:00am on Sunday, play a Youtube
video as an alarm

2) On your friend’s birthday, write a
“happy birthday” post on her wall

Use Cases

1) At 9:00am on Sunday, play a Youtube
video as an alarm

2) On your friend’s birthday, write a
“happy birthday” post on her wall

3) At 7:30am on April 20th, sign up for
courses on TigerHub

Use Cases

1) At 9:00am on Sunday, play a YouTube
video as an alarm

2) On your friend’s birthday, write a
“happy birthday” post on her wall

3) At 7:30am on April 20th, sign up for
courses on TigerHub

4) When prices for flight UA 87 drop
below $500, receive an email
notification and buy the ticket

Structure: At a glance

Frontend
- JavaScript/HTML/CSS
- Chrome extension

Structure: At a glance

Frontend
- JavaScript/HTML/CSS
- Chrome extension

Backend
- Python
- AWS
- SQLite (in progress)

How it Works: Frontend
Pipeline

1. Inject JavaScript
into every
element of page

2. When user
interacts with
element,
JavaScript sends
code to extension

How it Works: Frontend
Pipeline

How it Works: Frontend
Pipeline

3. User (optionally)
specifies a
condition

How it Works: Frontend
Pipeline

4. User sends
bundled macro to
server using
XMLHttpRequest
OR saves locally

How it Works: Frontend
Pipeline

5. User executes the
macro (with or
without
conditions)

How it Works: Frontend
Pipeline

6. User can
repeatedly play
the macro at set
intervals

How it Works: Backend Pipeline

1. Python packet sniffer script

2. SQLite3 Database

3. Splinter + Headless Browser

Backend: Python sniffer script

● Uses the Scapy package to process
incoming packets

Backend: SQLite3

Backend: Headless browser

Our browser of
choice: PhantomJS
● Alternative to

executing locally
● Example:

○ Local computer

is asleep or
turned off

Testing Process

1. 2 types of tests
a. Macro functionality: link clicks, form submits,

text entry, etc

b. Extension functionality: pressing buttons in
different orders

2. Have each group member test each
case independently
a. Report findings on shared Google doc

Known Issues

1. Cannot record macros for all pages -
tricky HTML stuff

2. Cannot interact with pages that don’t
exist yet e.g. “Confirm” on TigerHub

3. Sometimes don’t want to execute last
step (e.g. buying a plane ticket)

4. Recording macros while logged in

Future Work

1. Record more types of actions!
2. Add “value conditions”: match

JavaScript element on page e.g. stock
prices, ticket fares, etc

3. Backend Execution
4. Add option to record a simulated click

(e.g. Ctrl + click)

