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1 Purpose

In this document, we lay out the model for a general energy storage control problem and then design a

set of benchmark problems which can be solved exactly. The exact solution to each one of these problems is

included in the accompanying .zip file. This is meant to be a collection of problems that anyone can use to

asses the optimality of their algorithm.

We understand that real energy markets are much more complex than in this setting but we are confident

that the material presented in this document serves as a generally realistic benchmark for energy storage

control algorithms. Furthermore, we want to note that some of the model parameters were picked fairly

arbitrarily, though we made sure they led to interesting models in the context of energy storage. Ultimately,

the purpose of this document is to serve as a algorithmic benchmark and not an exact model of wind energy

storage.

Furthermore, variables are presented as unitless with the understanding that the appropriate units of

energy, power, price, etc. are implied. For example, one can think of time as hr, energy as MWh, power as

MW, price as $, etc. or any other unit system as long as all variables are of consistent dimensions.

2 A General Storage Problem

The network consists of a single energy storage device which is connected to a wind farm and to the

electricity grid. Electricity may flow directly from the wind farm to the storage device or it may be used

to satisfy the demand. Energy from storage may be sold to the grid at any given time, and electricity

from the grid may be bought to replenish the energy in storage or to satisfy the demand. We let T =

{0,∆t, 2∆t, . . . , T −∆t, T} be a finite time horizon.

2.1 The State of The System

The variable St = (Rt, Et, Dt, Pt) describes the state of the system at time t is given by:

• Rt : The amount of energy in the storage device at time t.

• Et : The net amount of wind energy available at time t.

• Dt : The aggregate energy demand at time t.

• Pt : The price of electricity at time t in the spot market.
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2.2 The Decisions

At any point in time, the decision is given by the column vector xt = (xWD
t , xRDt , xGDt , xWR

t , xGRt , xRGt ),

where xIJt is the amount of energy transferred from I to J at time t. The superscript W stands for wind, D

for demand, R for storage and G for grid.

2.3 The Constraints

We require that all components of xt be nonnegative for all t. We let Rmax be the total capacity of the

battery, ηc and ηd be the charging and discharging efficiencies, respectively, and γc and γd be the maximum

charging and discharging rates, respectively. For energy storage, at any time t we also require that the total

amount of energy stored in the device from the wind does not exceed the capacity available,

xWR
t + xGRt ≤ Rmax −Rt. (1)

We also make the assumption that all demand at t must be satisfied at time t:

xWD
t + ηdxRDt + xGDt = Dt. (2)

Additionally, the amount withdrawn from the device at time t to satisfy demand plus any amount of energy

sold to the grid after satisfying demand must not exceed the amount of energy that is available in the device

when we make the decision to store or withdraw:

xRDt + xRGt ≤ Rt. (3)

The total amount of energy charged to or withdrawn from the device is also constrained by the maximum

charging and discharging rates:

xWR
t + xGRt ≤ γc, (4)

xRDt + xRGt ≤ γd. (5)

Finally, flow conservation requires that:

xWR
t + xWD

t ≤ Et. (6)

The feasible action space, Xt, is the convex set defined by (1)-(6). We let Xπ
t (St) be the decision function

that returns xt ∈ Xt, where π ∈ Π represents the type of policy (which we determine later).

2.4 The Exogenous Information Process

For the purpose of this model, Wt = (Êt, P̂t). Note that the demand is assumed to be fixed (though not

necessarily constant).

Êt = The change in the energy between times t−∆t and t.

P̂t = The change in the price of electricity between times t−∆t and t.
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To avoid violating the nonanticipativity condition, we assume that any variable that is indexed by t is

Ft-measurable. As a result, Wt is defined to be the information that becomes available between times t−∆t

and t. A sample realization of Wt is denoted Wn
t = Wt(ω

n) for sample path ωn ∈ Ω.

2.4.1 The Discrete Uniform Distribution

We let U(a, b) for a, b ∈ R be the uniform distribution which defines the evolution of a discrete random variable

X with meshsize ∆X. Then each element in X = {a, a+∆X, a+2∆X, . . . , b−∆X, b} has the same probability

of occurring. The probability mass function is given by:

uX(x) =
∆X

b− a+ ∆X
,

for all x ∈ X.

2.4.2 The Discrete Pseudonormal Distribution

Let X be a normally distributed random variable and let fX(x;µX , σ
2
X) be the normal probability density

function with mean µX and variance σ2
X . We define a discrete pseudonormal probability mass function for a

discrete random variable X̄ with support X = {a, a+ ∆X, a+ 2∆X, . . . , b−∆X, b} as follows, where a, b ∈ R

are given and ∆X is the mesh size. For xi ∈ X we let:

gX̄(xi;µ, σ
2) =

fX(xi;µX , σ
2
X)∑|X|

xj=0 fX(xj ;µX , σ2
X)

be the probability mass function corresponding to the discrete pseudonormal distribution. We say that X̄ ∼

N (µX , σ
2
X) if X̄ is distributed according to the discrete pseudonormal distribution. We recognize this is

non-standard notation but it simplifies the notation in this document.

We include sample m-files createPriceProbability.m and createWindProbability.m for creating the pseudonor-

mal probability density function and the cumulative distribution function.

2.5 The Transition Function

The transition function is given by St+∆t = SM (St, xt,Wt+∆t). The transition function for the energy in

storage is given by:

Rt+∆t = Rt + φTxt,

where φ = (0,−1, 0, ηc, ηc,−1) is an incidence column vector that models the flow of energy from one node to

another. The transition dynamics for the wind, price and demand processes are given in sections 4.1-4.3.

2.6 The Objective Function

The function C(St, xt) represents the contribution from being in the state St and making the decision xt

at time t. Assuming that the demand at time t must always be satisfied at time t, our contribution at time t
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is just the total amount of money paid or collected when we transfer energy to and from the grid at time t:

C(St, xt) = PtDt − Pt(xGRt − ηdxRGt + xGDt )− ch(Rt + φTxt),

where ch = 0.001 is a holding cost.

We consider the control problem of maximizing the total un-discounted expected contributions over the

finite time horizon T : The objective function is then given by:

Fπ
∗

= max
π∈Π

E
[∑
t∈T

C
(
St, X

π
t (St)

)]
. (7)

3 Linear Programming

If the state variable evolves deterministically and the dynamics are known a priori, we can solve the control

problem using a standard batch linear program (LP):

F ∗ = max
x0,··· ,xT

∑
t∈T

C(St, xt),

such that xt ∈ Xt for each t and subject to transition dynamics expressed as a set of constraints linking all

time points. This formulation is most useful when we can make exact predictions about the wind, demand

and price trends. This is hardly ever the case with physical processes that are intrinsically stochastic, but

deterministic problems are useful to test the ability of the algorithm to learn the solution in the presence of

holding costs, when energy should be stored in the device as latest as possible in order to avoid incurring

extra costs. These test problems also allow us to test the capability of the algorithm to learn to store energy

in cases where the impact of storing is not felt until hundreds of time periods into the future.

We test different types of deterministic transitions dynamics, as specified in table 1. The actual values for

each of these is given in the accompanying dataset, as explained in section 5.

4 Dynamic Programming

In order to solve the stochastic problem exactly, we assume the device is perfectly efficient. For this reason,

we use a modified cost function in our simulations:

C(St, xt) = PtDt − Pt(xGRt − ρxRGt + xGDt )− ch(Rt + k · xt),

where ρ = 0.98 is a soft cost added to avoid degenerate solutions.

4.1 The Wind Process

The wind process Et is modeled using a first-order Markov chain:

Et+∆t = Et + Êt+∆t ∀t ∈ T \ {T},
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such that Emin ≤ Et ≤ Emax, and where Êt is either pseudonormally or uniformly distributed (see Table 2).

In the case where Êt ∼ N (µE , σ
2
E), its support is {−3,−3 + ∆E,−3 + 2∆E, . . . , 0, . . . , 3−∆E, 3}.

4.2 The Price Process

We test two different stochastic processes for Pt:

Sinusoidal:

Pt+∆t = µPt+∆t + P̂0,t+∆t ∀t ∈ T \ {T},

where µPt = 40− 10 sin
(

5πt
2T

)
and P̂0,t ∼ N (µP , σ

2
P ).

1st-order Markov chain:

Pt+∆t = Pt + P̂0,t+∆t + 1{ut+∆t≤p}P̂1,t+∆t ∀t ∈ T \ {T},

such that Pmin ≤ Pt ≤ Pmax, and where P̂0,t is either pseudonormally or uniformly distributed as indicated

in Table 2. In the case where P̂0,t ∼ N (µP , σ
2
P ), its support is {−8,−8 + ∆P,−8 + 2∆P, . . . , 0, . . . , 8−∆P, 8}.

We let ut ∼ U(0, 1), and we let p = 0.031 for problems where jumps may occur and p = 0 otherwise, and

P̂1,t ∼ N (0, 502) with support {−40,−40 + ∆P,−40 + 2∆P, . . . , 0, . . . , 40−∆P, 40}.

4.3 The Demand Process

The demand is assumed to be deterministic and given by Dt = bmax
[
0, 3− 4 sin

(
2πt
T

)]
c, where b·c is the

floor function.

4.4 The Markov Decision Process (MDP)

The optimal solution to stochastic problems can be found for problems which have denumerable and

relatively small state, decision and outcome spaces, St, Xt and Wt, respectively. In these cases, Bellman’s

optimality equation can be written as:

V ∗t (St) = max
xt∈Xt

(
C(St, xt) +

|St|∑
s′=1

Pt(s′|St, xt)V ∗t+∆t(s
′)
)

for t ∈ T , (8)

where Pt(s′|St, xt) is the time-dependent conditional transition probability of going from state St to state s′

given the decision xt, and where we assume that V ∗T+∆t = 0. After solving (8), we can simulate the model as

a MDP by stepping forward in time following the optimal policy, π∗, defined by the optimal value functions

(V ∗t )t∈T .

For a given sample path ω ∈ Ω, we can simulate the MDP by solving:

Xπ∗

t (St(ω)) = arg max
xt∈Xt

(
C(St(ω), xt) +

|St(ω)|∑
s′=1

Pt(s′|St(ω), xt)V
∗
t+∆t(s

′|St(ω), xt)
)

for t ∈ T ,

where St+1(ω) = SM (St(ω), Xπ∗

t (St(ω)),Wt+1(ω)).
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Label Price, Pt Wind Energy, Et Demand, Dt F1000

D1 Sinusoidal Constant Sinusoidal 99.99%
D2 Sinusoidal Step Step 99.92%
D3 Sinusoidal Step Sinusoidal 99.97%
D4 Sinusoidal Sinusoidal Step 99.98%
D5 Constant Constant Sinusoidal 99.97%
D6 Constant Step Step 99.93%
D7 Constant Step Sinusoidal 99.98%
D8 Constant Sinusoidal Step 99.99%
D9 Fluctuating Fluctuating Sinusoidal 99.97%
D10 Fluctuating Fluctuating Constant 99.96%

Table 1: Deterministic test problems.

Resource, Rt Wind, Et Price, Pt

Label Levels ∆R Levels ∆E Êt Levels Process P̂0,t

S1 61 0.50 13 0.50 U(−1, 1) 7 Sinusoidal N (0, 252)
S2 61 0.50 13 0.50 N (0, 0.52) 7 Sinusoidal N (0, 252)
S3 61 0.50 13 0.50 N (0, 1.02) 7 Sinusoidal N (0, 252)
S4 61 0.50 13 0.50 N (0, 1.52) 7 Sinusoidal N (0, 252)
S5 31 1.00 7 1.00 U(−1, 1) 41 1st-order + jump N (0, 0.52)
S6 31 1.00 7 1.00 U(−1, 1) 41 1st-order + jump N (0, 1.02)
S7 31 1.00 7 1.00 U(−1, 1) 41 1st-order + jump N (0, 2.52)
S8 31 1.00 7 1.00 U(−1, 1) 41 1st-order + jump N (0, 5.02)
S9 31 1.00 7 1.00 N (0, 0.52) 41 1st-order + jump N (0, 5.02)
S10 31 1.00 7 1.00 N (0, 1.02) 41 1st-order + jump N (0, 5.02)
S11 31 1.00 7 1.00 N (0, 1.52) 41 1st-order + jump N (0, 5.02)
S12 31 1.00 7 1.00 N (0, 2.02) 41 1st-order + jump N (0, 5.02)
S13 31 1.00 7 1.00 N (0, 0.52) 41 1st-order + jump N (0, 1.02)
S14 31 1.00 7 1.00 N (0, 1.02) 41 1st-order + jump N (0, 1.02)
S15 31 1.00 7 1.00 N (0, 1.52) 41 1st-order + jump N (0, 1.02)
S16 31 1.00 7 1.00 N (0, 0.52) 41 1st-order N (0, 1.02)
S17 31 1.00 7 1.00 N (0, 1.02) 41 1st-order N (0, 1.02)
S18 31 1.00 7 1.00 N (0, 1.52) 41 1st-order N (0, 1.02)
S19 31 1.00 7 1.00 N (0, 0.52) 41 1st-order N (0, 5.02)
S20 31 1.00 7 1.00 N (0, 1.02) 41 1st-order N (0, 5.02)
S21 31 1.00 7 1.00 N (0, 1.52) 41 1st-order N (0, 5.02)

Table 2: Stochastic test problems.

Since the transition from St to s′ is stochastic, a statistical estimate of (7) may be found by simulating K

sample paths ω1, . . . , ωK ∈ Ω :

F =
1

K

K∑
k=1

∑
t∈T

C
(
St(ω

k), Xπ∗

t (St(ω
k))
)
.

5 The Benchmarks

The set of deterministic benchmark problems in given in table 1. That of stochastic benchmark problems

is given in Table 2. Each problem is given a label. Some parameters are fixed for all problem instances where

they are used. These are given in tables 3 and 4.

5.1 The MATLAB Files

Deterministic problems:

The data for each problem instance is in a structure named label. Each structure constains six components:
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Parameter Value

Rmax 100.00
Rmin 0.00
R0 0.00
ηc 0.90
ηd 0.90
γc 0.10
γd 0.10
T 2000
∆t 1

Table 3: List of parameters for deterministic test problems.

Parameter Value

Rmax 30.00
Rmin 0.00
R0 25.00

Pmax 70.00
Pmin 30.00
∆P 1.00
Emax 7.00
Emin 1.00
ηc 1.00
ηd 1.00
γc 5.00
γd 5.00
T 100
∆t 1
K 256

Table 4: List of parameters for stochastic test problems.

label.C A scalar C, where C = F ∗ represents the optimal solution.

label.R A (T + 1)× 1 vector R, where Rt represents the energy in storage at time t.

label.e A (T + 1)× 1 vector E, where Et represents the energy available from wind at time t.

label.p A (T + 1)× 1 vector P , where Pt represents the electricity price at time t.

label.D A (T + 1)× 1 vector D, where Dt represents the energy demand at time t.

label.x A 6× (T + 1) matrix x, where x:t represents the optimal decision vector at time t.

Stochastic problems:

The data for each problem instance is in a structure named label, contained in label.mat. Each structure

constains eight components:

label.C A (T + 1)×K matrix C, where Ctk represents the contribution earned at time t for sample path k,

i.e. Ctk = C
(
St(ω

k), Xπ∗

t (St(ω
k))
)
.

label.R A (T + 1)×K matrix R, where Rtk represents the energy in storage at time t for sample path k.

label.e A (T + 1) ×K matrix E, where Etk represents the energy available from wind at time t for sample

path k.
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label.ehat A (T + 1)×K matrix Ê, where Êtk represents the change in energy available from wind between

times t− 1 and t for sample path k.

label.p A (T + 1)×K matrix P, where Pij represents the electricity price at time i for sample path j.

label.phat A (T + 1)×K matrix P̂, where P̂tk represents the change in electricity price between times t− 1

and t for sample path k.

label.D A (T + 1)× 1 vector D, where Dt represents the energy demand at time t.

label.x A 6 × (T + 1) ×K tensor x, where x:tk represents the optimal decision vector at time t for sample

path k, Xπ∗

t (St(ωk)).

5.2 The .txt Files

Deterministic problems:

The data for each problem instance is in a folder named label. In the folder, there are six .txt files, one for

each of the following components:

C.txt A scalar C, where C = F ∗ represents the optimal solution.

R.txt A (T + 1)× 1 vector R, where Rt represents the energy in storage at time t.

e.txt A (T + 1)× 1 vector E, where Et represents the energy available from wind at time t.

p.txt A (T + 1)× 1 vector P , where Pt represents the electricity price at time t.

D.txt A (T + 1)× 1 vector D, where Dt represents the energy demand at time t.

x.txt A 6× (T + 1) matrix x, where x:t (the tth column) represents the optimal decision vector at time t.

Stochastic problems:

The data for each problem instance is in a folder named label. In the folder, there are 263 .txt files, one for

each of the following components:

C.txt A (T + 1) ×K matrix C, where Ctk represents the contribution earned at time t for sample path k,

i.e. Ctk = C
(
St(ω

k), Xπ∗

t (St(ω
k))
)
.

R.txt A (T + 1)×K matrix R, where Rtk represents the energy in storage at time t for sample path k.

e.txt A (T + 1)×K matrix E, where Etk represents the energy available from wind at time t for sample path

k.

ehat.txt A (T + 1) ×K matrix Ê, where Êtk represents the change in energy available from wind between

times t− 1 and t for sample path k.

p.txt A (T + 1)×K matrix P, where Pij represents the electricity price at time i for sample path j.
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phat.txt A (T + 1) ×K matrix P̂, where P̂tk represents the change in electricity price between times t − 1

and t for sample path k.

D.txt A (T + 1)× 1 vector D, where Dt represents the energy demand at time t.

xk.txt A 6× (T + 1) matrix xk, where xk:t represents the optimal decision vector at time t for sample path

k, Xπ∗

t (St(ωk)).
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