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Abstract

Generative modeling across text, video, and image domains has benefited from the
introduction of discrete (quantized) representations for continuous data. Existing
techniques are limited to learning fixed-size quantized codes, which requires
training a new model for each desired compression rate. We aim to learn a single
model able to produce discrete representations at different granularities (bitrates).
We propose a study to answer the two main questions required to build such a
model: 1) How do we produce a variable number of latent codes (variability)? 2)
How do we allocate a given code budget across our input data (allocation)? We
propose a framework based on the Perceiver IO architecture, incorporating causal
attention to learn ordered latent codes that can then be adaptively pruned to a target
compression rate. We will conduct extensive experiments on a variety of datasets,
benchmarking our proposed approach for learning a single VBR quantizer against
prior techniques for quantized audio encoding.

1 Introduction

Learning compressed discrete codes from continuous domain data has been shown to enable efficient
latent generative modeling [24, 5, 23, 27, 26]. Latent generative modeling involves two stages: first,
an autoencoder is trained to compress the continuous input data (e.g., raw images, audio) into discrete
latent codes [31]; next, an auto-regressive language model is trained to model these codes [32].
This enables generating from the data distribution in latent space via sampling the auto-regressive
model and decoding through the autoencoder. Here, quantization eliminates semantically irrelevant
information via compression, enabling auto-regressive modeling of important information only.

In this proposal, we attempt to further optimize the compression step by exploiting variability in
semantically meaningful content across dimensions. For example, periods of silence in speech require
fewer bits to encode [36]. Taking advantage of variable bitrate (VBR) is a common technique in
compression methods such as MP3 [28] and JPEG [33]. The core challenges of VBR compression
in neural networks is solving the allocation problem (how many codes are needed?) and variability
problem (how do we produce a variable number of latent dimensions?).

We propose an end-to-end domain-agnostic framework for training autoencoders to 1) produce a
variable number of discrete latent codes from raw continuous data; and 2) effectively allocate the
number of latent codes for a window of input data that yields a strong reconstruction quality for a
given average bitrate. The key to our method is leveraging the recently proposed Perceiver architecture
[10] with causal attention mechanisms [3] to learn ordered latent representations (Section 4).

We design experiments to measure the effectiveness of our approach across three increasingly chal-
lenging audio datasets in Section 5.3. We will investigate the correlation between compression
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rate, reconstruction quality, and modeling efficiency by comparing models trained with our frame-
work against baseline techniques for multi-model VBR [5, 34] compression, as well as established
technologies for lossy audio compression.

Although the technique we propose is broadly applicable, our experiments will focus on the audio
domain, where speech and music are widely consumed yet require substantial space for storage and
transmission [19]. Much like hand-engineered VBR schemes for lossy compression (e.g., MP3),
we aim to create compact, discrete representations of continuous data while maintaining high
reconstruction fidelity.

2 Related Work

Discrete latent codes offer a potentially more efficient representation for many common data modali-
ties like video, images and speech compared to continuous representations [18, 31]. Discrete latent
representations have seen recent success for image [24, 23] and audio generation [5], speech recog-
nition [2], and has downstream applications for pre-training on continuous-domain data [16]. By
quantizing continuous-domain data into a discrete format, one can apply off-the-shelf language
modeling techniques by treating raw data as text [12]. Existing approaches for learning discrete
codes typically use a fixed-sized code-book and compresses data at a constant bitrate regardless of
the semantic information contained in its data.

In MP3 encoding, VBR is achieved by computing the maximum allowable noise within a frame
of audio and iteratively increasing the granularity of quantization until it falls within the allowable
reconstruction noise as determined by a psycho-acoustic model hand-tuned on several “difficult"
music tracks [4].

Multi-model approaches try to learn a hierarchical stack of autoencoders [34] or multiple autoen-
coders [5]. Each autoencoder learns at a different bitrate (temporal resolution), enabling the selection
of latent codes at different fixed granularities. Multi-model methods require multiple rounds of
training or multiple models for each bitrate. At inference time, there is no automatic way to determine
how many codes are required to maximize the rate-distortion trade-off. Add-on techniques may be
used to determine code allocation. For example, Yang et al. [35] inspect the entropy of the latent
variable and apply post-hoc techniques to decide how many codes to allocate.

Structured dropout approaches such as Nested Dropout [25] introduce noise during training to
impose order in an autoencoder’s latent space (similar in spirit to PCA [21]). They define a geometric
distribution where dropping one unit causes all units to its right to also be dropped. Nested Dropout
is used in the Soundstream audio codec [36], which reports positive subjective evaluations of low
bitrate outputs. However, structured dropout does not inform us of how many codes we need to prune,
and it is difficult to train—the right-most (most frequently dropped) latent codes are typically of poor
quality as they receive few training gradients [14].

SlowAE [6] produces event-based representations by outputting features at each time-step t, then
quantizing the features at each time-step and compressing via run-length encoding across the time
dimension. This approach is not fully end-to-end and many additional post-processing steps (each
with hand-tuned parameters) are required to determine the number of codes to generate. We instead
allocate a fixed maximum number of codes (independent of t) for a single segment of audio, and then
output a quantized distribution over these codes.

Our approach combines ideas from these previous work. In effect, our model is multi-model in that it
can reduce its latent modeling capacity by having a smaller input latent array. Our causal attention
mechanism imposes latent ordering similar to Nested Dropout.

3 Problem Statement

Given a continuous data sequence x[1:T ] ∈ RC chunked into a set of non-overlapping windows
xw ∈ {x1, ..., xW } (e.g. a flattened image patch or sequence of audio), we aim to train an autoencoder
to encode xw into a set of n discrete latent codes z = q(xw, n), z ∈ Cn where C is the alphabet of
the discrete code, typically represented as some integer. The encoder q must adapt the dimensionality
of z on-demand. z can then be decoded back into the original input space via a learned decoder:
x̂w = d(z).
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Figure 1: Compression: We encode input audio features into a fixed-size representation via a learned
latent code array, imposing order via L rounds of causal self-attention. Gumbel softmax is used to
quantize the array into a distribution over the code space. Decompression: Quantized codes are
embedded via a learned lookup table, going through L additional rounds of causal self-attention.
Attention outputs are attended over via 1D Fourier positional features to produce a decompressed
T -length audio sequence.

To produce a variable number of codes to represent the input data, our framework must recommend
the number of codes to allocate for a given window of input data xw. We define a code allocation
scoring function s(xw) ≥ 0 that represents the relative importance of a given window to other
windows in terms of their semantic content. To choose nw for each window of data, we can compute
the scoring function on all W windows of the input, and allocate based on the percentage contributed
by the score produced by each window:

nw =
s(xw)∑W
i=1 s(xi)

×N

whereN is the total number of codes the user wishes to allocate for the x. This can also be formulated
in terms of a target average bitrate, which is commonly used in software that renders MP3s or videos.

By learning a variable latent autoencoder along with a scoring function, we are able to produce a
variable number of codes per window of input data. The objective is to minimize the reconstruction
error of the autoencoder over the entire input.

4 Methodology

We propose a simple, end-to-end framework for learning to encode a window of continuous data into
a variable number of discrete latent codes. In contrast to existing fixed bitrate quantization schemes,
our framework allows users to incrementally remove codes (corresponding to increasing compression
rates and lower bitrate), returning data with gradually increasing degradation [25].

4.1 Perceiver Quantizer

The core of our architecture design builds upon the success of the Perceiver IO [10] architecture.
This is different from most previous work that relies on some form of convolution-based autoencoder
[5, 36]. The Perceiver is an attention-based model that enables an M ×C input array to be coalesced
into an N ×D latent array, then decoded back into the input space. These input and latent spaces
sizes are decoupled, and model learns to reshape the input data into latent space via a cross attention
mechanism. The self-attention mechanism within the latent space naturally enables us to change the
number of latent codes during inference time (e.g., by deleting rows of the N ×D latent array).
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Jaegle et al. [10] showed promising results for multimodal auto-encoding, demonstrating Perceiver’s
ability to handle images, audio and classification labels. However, in their experiments, the Perceiver
used a pre-determined number of latents N and there was no quantization bottleneck. We propose a
Perceiver Quantizer architecture to solve our problem statement as follows (see Figure 1):

We add a quantization bottleneck to the middle of the Perceiver. Specifically, we introduce a Gumbel
Softmax [11] layer to quantize the latent space, similar to the approach used in DALL-E [23]. The
encoder must thus learn how to compress the data into discrete codes.

As depicted in Figure 1, we take as input an audio sequence “chunked" into an array of size M × C
where M = T

C , C = 16. We attend over the input features via a learned, fixed-size latent array
with maximum N codes and D dimensionality. The encoder performs L rounds of causal self-
attention over the fixed-size encoding, and a Gumbel Softmax layer is used to perform (differentiable)
quantization into a distribution over latent codes.

To decompress the quantized codes, the codes are embedded via a learned N ×D lookup table. This
goes through L additional rounds of causal self-attention. The self-attention outputs are attended over
via (fixed) Fourier positional features for M positions with H dimensionality. The cross-attention
outputs are then unchunked to produce a decompressed T -length audio sequence.

Inroducing Order via Causal Self-Attention Although the Perceiver architecture enables us to
remove latent codes during inference time, it is unclear which latents we should remove. A possible
end-to-end approach is to learn a bitmask over the latents that determines which latents are more
important [15], and prune the unimportant latents according to some code allocation strategy (Sec.
4.2). However, since such a pruning strategy leads to non-contiguous codes, it requires storing both
the bitmask and the codes in order to reconstruct the input.

In practice, we want to produce a contiguous set of latent codes that we can compactly store, which
can be achieved by imposing an ordering to the latent variables. To this end, we propose changing
the self-attention from full attention to causal attention [22] (e.g., any given latent can only attend to
its left latents). This is similar to Nested Dropout in that it imposes an ordering of the latents, but it
does not introduce stochastic noise that hinders training.

We hypothesize that this setup should enable us to learn an ordered discrete representation of data.
By the definition of causal attention, the codes on the left are unaffected by the right. This ordered set
of latent codes enables us to construct q(xw, n) for an arbitrary n by simply discarding latent codes
on the right during inference. We expect that removing the latent codes from right to left results in a
gradual degradation of reconstruction quality compared to a non-causal self-attention.

4.2 Code Allocation Strategies

Now that we have proposed a method to learn q(xw, n), we propose a few strategies to construct
s(xw). We plan to compare these strategies to see which one is the simplest and most effective.

Attention-Based Scoring A parameter-free approach to allocate codes within a given window of
input s(xw) is to introspect the attention weights of the decoder d(z) during inference. To reconstruct
the input data, the decoder must attend, for each output position o, to the latent space, using its
cross attention mechanism by assigning an attention weight a(o)1 , ..., a

(o)
N for all N latent codes. We

consider the average attention weight over all O output positions assigned to each latent position
as ai =

∑o=O
o=1 a

(o)
i /O, Note that this averaging can be extended to the case where multi-headed

attention is used, where we would take the average over the different heads.

With the average attention score computed ai, we treat this value as the importance of the latent code.
We define the scoring function as the total of these cumulative sums: s(xw) =

∑N
i=1

∑N
j=i aj .

Intuitively, we can understand this heuristic as follows. When a latent is pruned (or, equivalently, not
allocated), it is equivalent to having zero attention weight applied to it from the decoder’s perspective.
The cumulative sum is used to represent the cost of removing all codes to the right z≥j of the j-th
code. The drawback of this approach is that attention-based scoring requires running both the encoder
and decoder during inference, and may lead to slower compression encoding times.
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Entropy-Based Scoring An alternative parameter-free approach is based on the ideas proposed in
Variational Bayesian Quantization [35]. Because we defined our quantization procedure using the
Gumbel Softmax approach, our latent codes are probabilistic and our autoencoder is a Discrete VAE
[11]. Thus, we can infer the entropy of each latent code to see how uncertain each code is.

We can employ the heuristic that highly uncertain codes should be pruned because their information
is deemed inaccurate anyway. We propose computing the entropy of each latent code: H(zi) =

−
∑C

c P (z
(c)
i ) logP (z

(c)
i ), where P (z(c)i ) is the probability of producing code c from alphabet C.

This can be easily computed during inference without running the decoder.

By considering all entropies in a given window of data, we define our score as s(xw) =∑N
i=1

∑N
j=i 1/H(zi). The intuition for this scoring function is similar to that of Attention-Based

Scoring.

5 Experimental Protocol

5.1 Datasets

We evaluate our model alongside baselines in three increasingly challenging speech settings: Lib-
rispeech [20] is a benchmark dataset for speech recognition, comprising 1000 hours of single speakers
(1,166) reading from books. TED-LIUM [8] contains 452 hours of audio from online single-speaker
presentations, containing more varied cadence and unique speakers (1,970) compared to Librispeech.
This American Life (TAL) [17] poses a more challenging setting, comprising 663 podcasts, each
containing multiple speakers, music, and other noise. TAL has a total of 6,608 unique speakers
across 637 hours of audio. All raw audio is re-sampled to a 16 kHz sampling rate and segmented into
3-second snippets, corresponding to audio experiment settings from van den Oord et al. [31]

5.2 Evaluation

We measure the compression rate of each algorithm via average bit rate in bits per second (bps). A
sequence of n latent codes z ∈ Cn with vocabulary size |C| comprises log2(|C|n) bits.

We will also assess audio reconstruction quality of each approach. Following Arik et al. [1], we
compute the following losses between the reference audio waveform x and reconstructed waveform
x̂: To capture how the reconstructed waveform fits large-amplitude spectral components, we compute
Spectral convergence (SC):

SC = ‖ |STFT(x)| − |STFT(x̂)| ‖F / ‖ |STFT(x)| ‖F
where STFT is the Short-Time Fourier Transform [7] and ‖ · ‖F represents the Frobenius norm over
time and frequency. We additionally compute Mean Squared Error (MSE) as MSE =‖ x− x̂ ‖22.

For subjective evaluation of reconstruction quality, we will conduct Mean Opinion Score (MOS)
tests using Amazon Mechanical Turk for rating audio quality [30, 5]. Each subject will be instructed
to listen to a sample of reconstructed audio and rate its naturalness and clarity on a five-point Likert
scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).

Modeling efficiency For each approach, we will measure the complexity of training a model (or
models) to perform VBR quantization, including the number of independent models to be trained, the
total number of parameters across all models, and the total wall-clock training time. Each of these
metrics will be reported as their raw values for each target compression rate investigated.

5.3 Experiments

RQ1: Does our framework allow us to learn variable bitrate models? As our aim is to learn a
single model capable of encoding continuous data at various bitrates, we assess the reconstruction
quality of our models at several fixed average bitrates (B := {b0, . . . , bn} such that bi < bi+1). For
each target bitrate bi, we compare the following five approaches:

Our first multi-model baseline follows Dhariwal et al. [5]: we train a different constant bitrate model
for each target bitrate bi. Each of the |B| models is trained independently (MM-Ind), and for a target
bitrate bi we use only the corresponding model to encode our data.
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Following Williams et al. [34], we next train a different constant bitrate model for each target bitrate
bi. These models are jointly trained in a hierarchical cascade (MM-Hier), such that the bi model
receives as input audio encoded at bi+1 (output of the bi+1 model) and outputs latent codes at bi.
For target bitrate bi we pass the input data through the stack of i hierarchical encoders: bj ; j ≥ i.
This may serve to be computationally infeasible for large bitrate ranges, and we only compare this
baseline in situations where it can be trained.

We then train our Perceiver Quantizer with full self-attention (Full-Attn), pruning codes from the
right-most rows in the N ×D latent array until a bi bitrate representation remains. We thus observe
whether self-attention in the latent space is inherently robust to pruning and allows VBR compression.

We compare two methods of imposing order in the latent codes: training our Perceiver Quantizer
with Nested Dropout [25] (Nest), and with causal attention masking (Causal). We again prune codes
from the right-most, until a bi bitrate representation remains.

Note that our architecture differs from convolutional approaches used in previous work, so direct
comparison is not possible with Dhariwal et al. [5], Williams et al. [34]. For fair comparison, we
compare results using the same Perceiver architecture, varying the pruning technique used to produce
variable latent codes. Specifically, MM-Ind and MM-Hier will use the self-attention mechanism in
the Perceiver, but the latent space will not adapt (e.g., the N ×D latent array stays constant).

We thus collect 5·|B| data points, and for each method we can compare the quantitative reconstruction
quality at a target bitrate bi. We expect that our causal training approach will result in better
reconstruction quality compared to stochastic training with Nested Dropout across all target bitrates,
but slightly degraded quality compared to multi-model approaches trained specifically for each
bitrate. We aim to establish whether reconstructed audio from our single VBR model is judged to
be of comparable quality to multi-model baselines across several target bitrates, when multi-model
baselines require significantly greater compute to train.

RQ2: How do we allocate latent codes? In the previous set of experiments, we investigate
whether our approaches to VBR quantization can accurately reconstruct audio given varying target
compression rates for a given window of input data. We next explore whether adaptive code allocation
strategies (Section 4.2) can provide better reconstruction quality at a target bitrate over all windows of
a data sample. Here, we split a single audio recording into 3-second windows, encode each window
via a VBR model (Nest and Causal), perform pruning over latent codes for all windows, and then
decode each (pruned) window to reconstruct the recording.

For each target bitrate bi ∈ B, we compare using a fixed pruning strategy (Fixed)—where each
window of audio is pruned to the same number of codes—against attention-based (Attn) and entropy-
based (Entropy) adaptive pruning. As a baseline, we compare against MP3—an industry-standard
for lossy audio compression that supports full-file encoding at different bitrates. bi outputs are
encoded using FFmpeg [29] set to bi.

We expect adaptive pruning strategies to allow us to more heavily prune latent codes in audio segments
with high noise and/or little substantive speech, while allocating more codes to high-information
segments. This should in theory provide better overall reconstruction quality at a target bitrate
compared to the baseline. We also seek to measure whether computationally expensive pruning
strategies (i.e., Attention-based) provide a perceptible improvement in subjective reconstruction
quality compared to faster strategies (i.e., Fixed and Entropy).

Hyperparameters We will investigate whether observed trends depend on model capacity, con-
ducting experiments from Section 5.3 at different maximum bitrates (64, 128, 256 latent codes),
model depths (8, 16, 32 layers) and hidden dimensionality (128, 256, 512).

Additionally, in preliminary experiments we have found that both the Gumbel Softmax and Perceiver
IO are sensitive to hyperparameters, We will sweep the τ temperature parameter between 2.0 and
0.25 (matching the annealing range used in [2]). We will also experiment with annealing schedules
for τ [11, 2].

We will optimize each model using LAMB [9], performing hyperparameter search over training
hyperparameters (learning rate, scheduling, warmup, batch size, epochs, and regularization) via Tune
[13] and selecting based on best reconstruction quality on a held-out dev set.
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